

Institute for Sustainability and Innovation in Structural Engineering

The role of resource efficiency towards circular economy

Helena Gervásio

FACULDADE

Introduction

- Development of a **performance based approach for sustainable design**, enabling to assess the resource efficiency of buildings, throughout the complete life cycle;
- To support European policies related to the efficient use of resources in construction;
- To foster the harmonization between structural design and sustainability design of buildings, in order to enable an easier integration of structural and sustainability criteria in the design process, thus coping with the basic requirements for construction works of the Construction Products Regulation.

EU policies

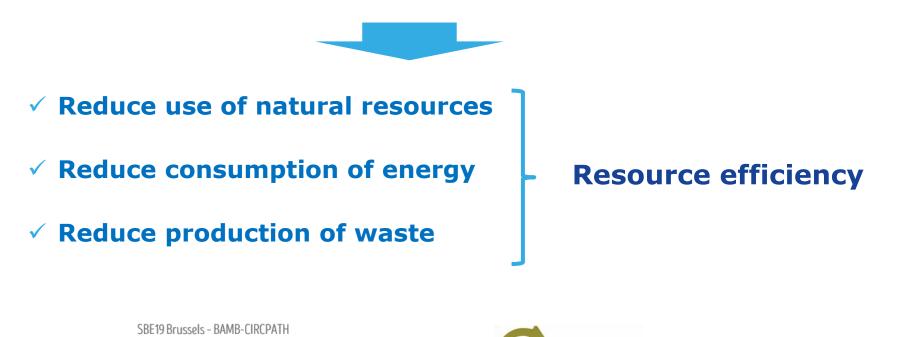
FACULDADE

SBE19 Brussels - BAMB-CIRCPATH

- Roadmap to a **Resource Efficient Europe** (COM(2011) 571 final)
- Resource efficiency opportunities in the building sector (COM(2014) 445 final)
- Towards a circular economy: A zero waste programme for Europe (COM(2014) 398 final)
- Closing the loop An EU action plan for the Circular Economy (COM(2015) 614 final)

Life cycle thinking

Standardized criteria and methodologies for impact assessment



This project has received funding from the European Union's Horizon 2020 research and innovation programme under

grant agreement No 642384.

Methodology

 Performance-based approach for sustainable design: a structure shall be designed in such a way that it will with appropriate degrees of reliability, in an economical way and with low environmental impacts, attain the required performance.

05-07 February 201

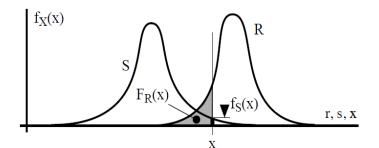
Harmonization between structural and sustainable design

Structural design

FACULDADE

DE CIÊNCIAS

E TECNOLOGIA


The safety condition: $R \ge S$

Limit state function: G = R - S

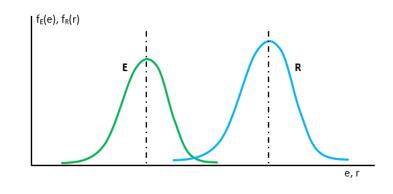
JNIVERSIDADE Ð

COIMBR

✓ Ultimate Limit States (ULS)
 ✓ Serviceability Limit States (SLS)

SBE19 Brussels - BAMB-CIRCPATH

 $P_f = P[G(X)] \le 0$


Sustainable design

Condition that should be satisfied: $R \ge E$

Limit state function: S = E - R

Limit State of Sustainability

 $p_{env} = P[S(X)] \le 0$

05-07 February 2019

Methodology

COIMBR

1. Adoption of a consistent model for LCA enabling comparability

standardized framework of CEN-TC350 for the life cycle assessment of construction works (EN 15804 and EN 15978).

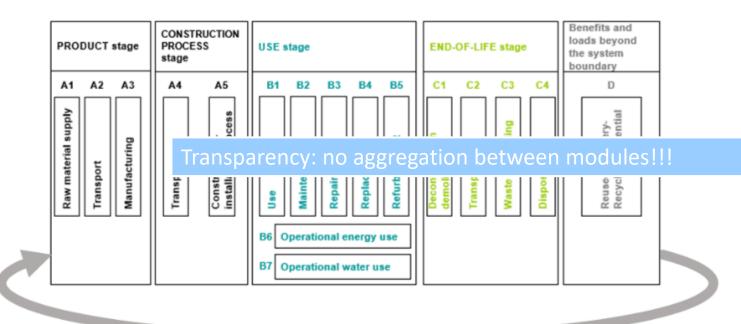
2. Collection of building data

3. Quantification of benchmarks

- Focus on residential and office buildings;
- The analysis is limited to the structural systems of building.

Model for LCA

UNIVERSIDADE D


COIMBRA

FACULDADE

DE CIÉNCIAS

E TECNOLOGIA

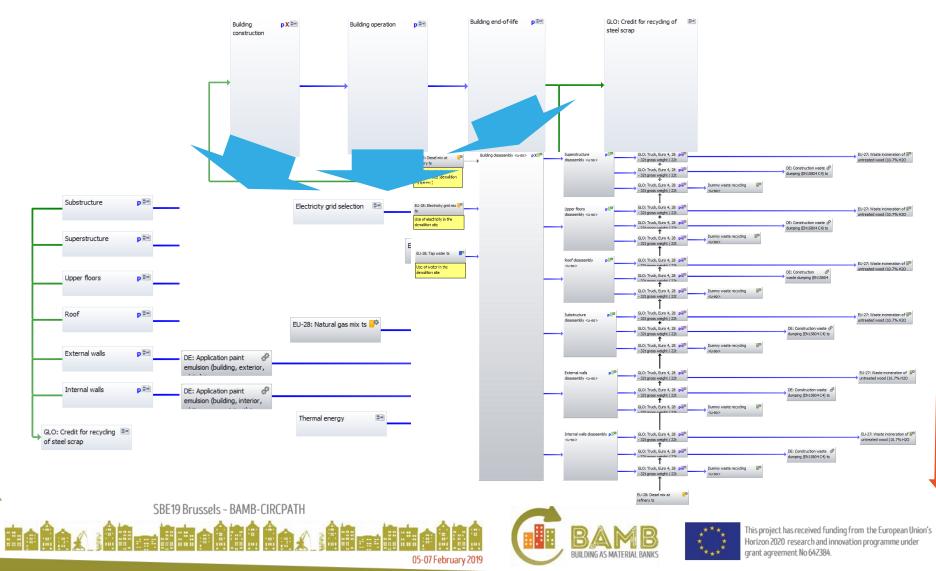
CEN TC350 standards - Sustainability of construction works

Model for LCA

Environmental indicators

Parameters describing environmental impacts												
GWP [kg CO ₂ eq.]	ODP [kg CFC eq.	AP] [kg SC	P EP (g SO ₂ eq.] [kg PO ₄ e		POCP .] [kg Ethen. Eq.]		APD-elements [kg Sb Eq.]		ADP-f [MJ]	ossil fuels		
Parameters describing resource use, primary energy												
Use of renewable primary energy excluding renewable primary energy resources used as raw materials [MJ NCV]			Total use of renewable prin energy (prima energy and prin energy resource used as raw materials) [MJ NCV]	mary ry (imary ces	energy ex	e primary cluding vable nergy used as	Use of non renewable energy resources used as raw materials [MJ NCV]		Total use of non renewable primary energy (primary energy and primary energy resources used as raw materials) [MJ NCV]			
Parameters describing resources use, secondary materials and fuels, and use of water												
Use of secondar [kg]	y material	Use of	f renewable seo fuels [MJ]	y Use of non renewable secondary fuels [MJ]				Use of net fresh water [m3]				
Other environmental information describing waste Other environmental information describing categories output flows												
Hazardous waste disposed [kg]			for re		oonents use [kg]	Materials recycling	energy r			Exported energy [kg]		

Model for LCA


UNIVERSIDADE D

COIMBRA

Implementation in a LCA software (GaBi software)

FACULDADE

DE CIÈNCIAS E TECNOLOGIA

Parametric model

Model for LCA

UNIVERSIDADE D

COIMBRA

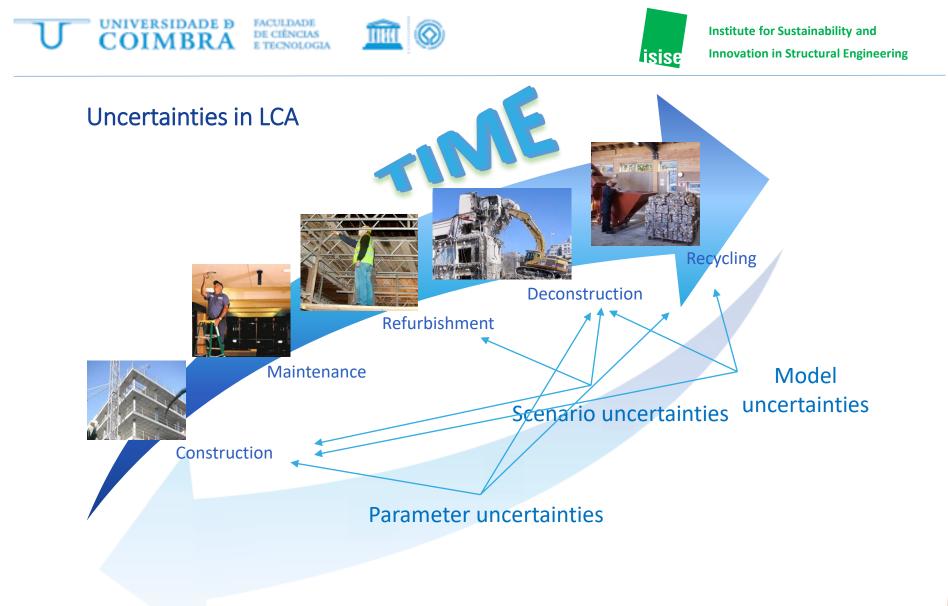
Implementation in a LCA software (GaBi software)

FACULDADE

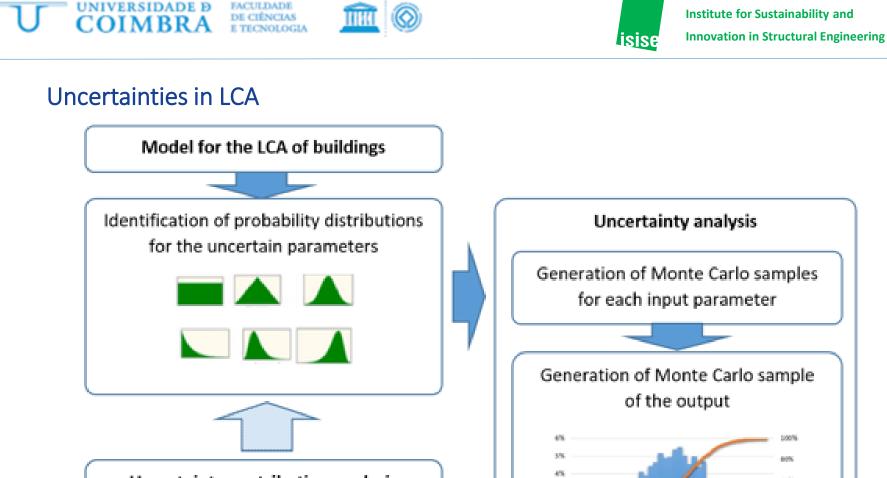
DE CIÊNCIAS

E TECNOLOGIA

Parameter Explorer: Building life cy	/cle	NamePort and				10 Tau	- 10					
ctive scenario group	01	Active scer	nario Compo	site building	•							
Scenarios Parameter Plan												
DB object settings	Basic	settings (valid for all Scena	rios)									
cenario group 1	Alas Object Parameter Value Comment, units, Building operat											1
cenario standard		Building operat)eti	nit	ION	ot	mu	Itiple
1 SI (IMPRO)	•		ing oper Area	0	[m2] Total	area (icipic
L_MF (IMPRO)			ing oper Lifespan	0	[years] Nu			_		•		
HR (IMPRO)		occupancy Beld Alias Object	ing oper:occupanc	y O	[units] Nur	nber o		S	cen	nari	OS	
SI (IMPRO)								-			_	
MF (IMPRO)		arios Input	baran	neters								
2_HR (IMPRO)	Scen		Object		Parameter	72 HD 00	172 HD 00	172	72 40 00	77 LD 00	72 HD 003	2Comment, units, defaults
3 SI (IMPRO)		Building materials	object		Fordifieter	23_FIK_00	123_RK_00.	123_RK_00.	223_FIK_00.	223_RK_00.	223_FIK_002	Comment, units, defaults
- · ·	4	1. Substructure		7								
_MF (IMPRO)	4	1.1 Ground work										
_HR (IMPRO)	•	1.1.1 Excavation to b	Substructure	· 'Building life cycle'	'SB11	0	0	0	0	0	0	[m3] Excavation of soil for basement
Basic settings (valid for all Sc	•		Substructure	 'Building life cycle' 	'SB12	0	0	0	0	0	0	[kg] Gravel bed
Z3_HR_001	• •	1.2 Piling										
Z3_HR_001 ref Z3_HR_002_ex	•	1.2.1 Concrete in pilir				0	0	0	0	0	0	[kg] Concrete in piling
Z3_HR_002_ex ref	•	1.2.2 Steel Reinforce	Substructure	 'Building life cycle' 	'SB22	0	0	0	0	0	0	[kg] Reinforcement in piling
Z3 HR 002	4 >	1.3 Concrete		10 11 10 11	lenge							
Z3 HR 002 ref	4	1.3.1 Concrete in foo 1.3.2 Concrete in gro				0	0	0	0	0	0	[kg] Concrete in footing beams [kg] Concrete in ground slab
	-	1.3.3 Concrete in gro				0	0	0	0	0	0	[kg] Concrete in ground slab [kg] Concrete in foundation caps
	-	1.3.4 Bitumen membr				1.08E003	-	1.08E003	-	-	-	[kg] Bitumen membrane
	•		- Subsu detaile	ballang inc cycle	3031	1,002003	5 540	1,002003	540	1,002003	1,002003	[kg] brailer menorale
	4	1.4.1 Formwork to co	Substructure	· 'Building life cycle'	'SB41	0	0	0	0	0	0	[kg] Formwork
	4.)	1.5 Steel reinforcen										
	4	1.5.1 Bar reinforceme	🛤 Substructure ·	 'Building life cycle' 	'SB51	0	0	0	0	0	0	[kg] Reinforcement in footing beams
	•	1.5.2 Bar reinforceme				0	0	0	0	0	0	[kg] Reinforcement in ground slab
	4	1.5.3 Bar reinforceme	Substructure	 Building life cycle 	'SB53	0	0	0	0	0	0	[kg] Reinforcement in foundation caps
	• •	Libuperseructure										
	-	2.1 Concrete		10 11 16	0044							
	4	2.1.1 Concrete infill t 2.1.2 Concrete in col				0	0	0	0	0	0	[kg] Concrete in tubular sections [kg] Concrete in columns
New: Scenario group >	+	2.1.2 Concrete in con 2.2 Steel reinforcen		: - building ine cy	C3312	U	v	0	0	0	0	[kg] concrete in countris
oset: Concrete selection in 3.1.1	4	2.2.1 Bar reinforceme		- 'Building life cv	eSS21	0	0	0	0	0	0	[kg] Reinforcement in tubular sections
set: Concrete selection in 3.1.2	4	2.2.2 Bar reinforceme				0	0	0	0	0	0	[kg] Reinforcement in columns
set: Concrete selection in 3.1.3	4.1			2								
oset: Concrete selection in 4.1.1	4	2.3.1 Steel sections	🗈 Superstructure	- 'Building life cy	eSS31	0	0	0	0	0	0	[kg] Steel sections
oset: Concrete selection in 4.1.2	•	2.3.2 Steel plate	Superstructure	- 'Building life cy	eSS32	0	0	0	0	0	0	[kg] Steel plate
bset: Concrete selection in 4.1.3	-	2.4 Formwork										
bset: External walls coating	4	2.4.1 Formwork to co	Superstructure	- 'Building life cy	eSS41	0	0	0	0	0	0	[kg] Formwork columns
bset: External walls insulation selection	4 >			In the br								
bset: Window selection	4	2.5.1 Fire protection 3. Upper foors	Superstructure	 Building life cy 	e5551	0	0	0	0	0	0	[kg] Fire cladding


SBE19 Brussels - BAMB-CIRCPATH

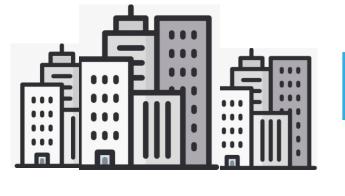
This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 642384.

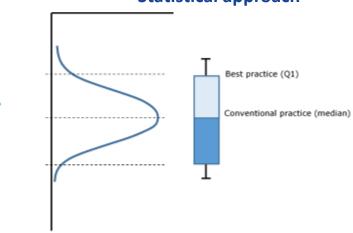

05-07 February 2019

Uncertainty contribution analysis

Global sensitivity analysis

SBE19 Brussels - BAMB-CIRCPATH





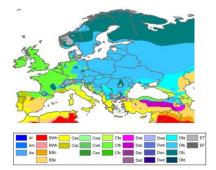
Quantification of benchmarks

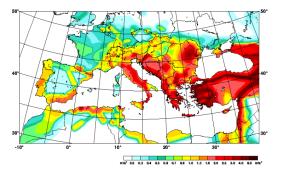
Collection of building data

Statistical approach

Types of buildings

Tier 1	Tier 2	Tier	_		Reinforced concrete
	Residential buildings	SF	Single-family houses (SF)		structure
		MF	Multi-family houses (≤ 5 stories)	ier 4	Steel structure
		MR	Medium rise buildings (5 – 15 stories)		Composite structure
Buildings		HR	High rise buildings (> 15 stories)		Wood structure
Buildings		LR	Low rise buildings (≤ 5 stories)	Ξ	Masonry structure
	Office	MR	Medium rise buildings (5 – 15 stories)		Hybrid structure
	buildings	HR	High rise buildings (> 15 stories)		Others
		TB	Tall buildings (> 60 stories)		




Quantification of benchmarks

Differentiation factors

Climatic regions

Seismic regions

Other vulnerable regions (climate change effects)

Northern Europe Temperature rise much larger than global average Decrease in snow, lake and river ice cover lincrase in river flows. Speciels Increase in crop yields Decrease in energy demand for heating Increase in hydrogover potential Increase in summer fourismitter storms Increase in summer fourismitter storms

Mountain areas Temperature rise larger than European average Decrease in mountain permafrost areas Upward shift of plant and animal species High risk of species extinction in Alpine regions Increasing risk of soll erosion Decrease in ski tourism

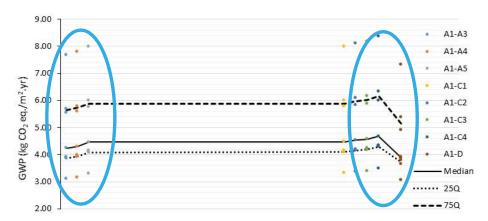
Central and eastern Europe Increase in warm temperature extremes Decrease in summer precipitation Increase in watter temperature Increasing risk of forest fire Decrease in economic value of forests

National Annexes

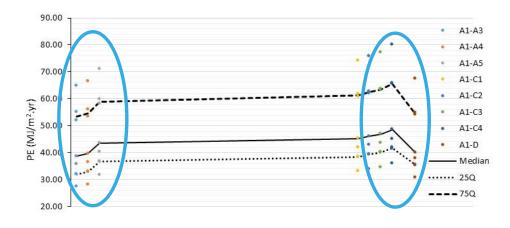
SBE19 Brussels - BAMB-CIRCPATH

FACULDADE

DE CIÊNCIAS


E TECNOLOGIA

Range of values for GWP in each module



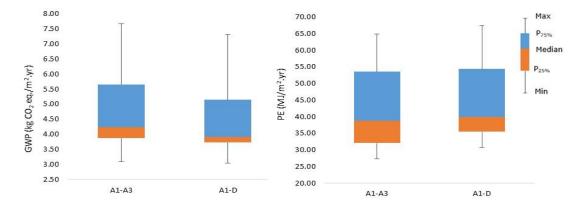
UNIVERSIDADE D

COIMBR

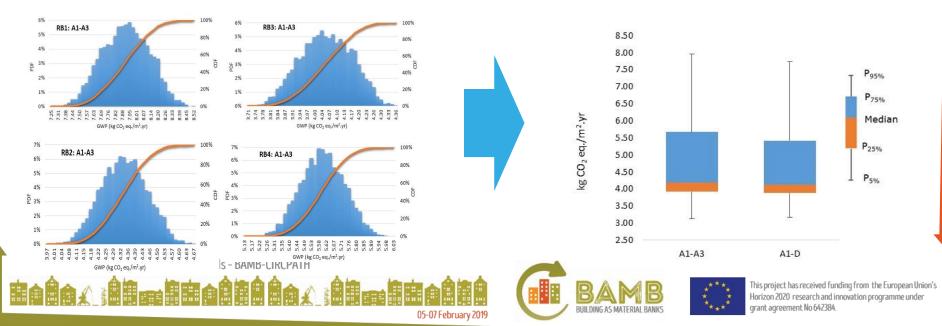
Range of values for PE in each module

FACULDADE

DE CIÉNCIAS


E TECNOLOGIA

UNIVERSIDADE Ð


COIMBRA

Range of values for GWP and PE in A1-A3 & A1-D

Uncertainty propagation and distribution of GWP values

SBE19 Brussels - BAMB-CIRCPATH

FACULDADE

DE CIÈNCIAS

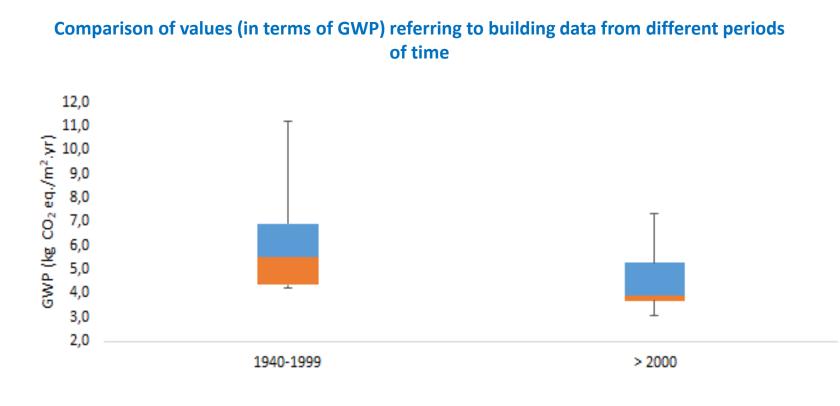
E TECNOLOGIA

UNIVERSIDADE D

COIMBRA

S

Preliminary set of benchmarks for residential buildings


							Single-fami	ly house		Multi-fam	ily house		High-rise building			
	Clima	tic zones				e	xisting	new	e	xisting	isting new		ing	new		
	Zone	1: South Euro	pean cour	ntries			8	3		8 3		2		1		
	Zone	2: Central Eur	opean cou	untries			8	3		8 3		2		1		
	Zone	3: North Euro	pean cour	ntries			7	2		8 2		2		1		
		TOTAL				TAL	31			32	2		9			
										γ						
		Median	σ	P _{25%}	P 7	5%	/					Median	σ	P _{25%}	P _{75%}	
	GWP1	7.22	3.80	2.53	8.7						GWP1	5.53	2.05	4.34	6.91	
SI	GWP2 PE	8.94 139.25	4.20 54.17	5.01 124.19	11.3 186.					HR	GWP2 PE	6.57 88.89	1.81 24.78	5.03 68.51	6.94 94.93	
		133.23	54.17	124.15	MF	GWP1 GWP2 PE	Median 6.30 7.32 105.60	σ 3.76 3.89 48.80	P 25% 4.88 5.37 84.50	P 75% 9.94 10.75 159.77		66.65	27.70	00.51	54.55	

<u>Source</u>: IMPRO-Building: Environmental Improvement Potentials of Residential Buildings (IMPRO-Building), EUR 23493 EN

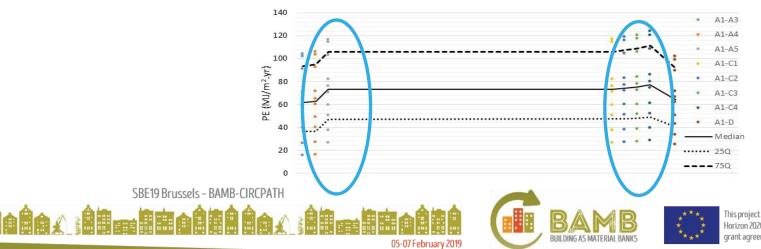
Benchmarks for office buildings

UNIVERSIDADE D

COIMBRA

FACULDADE

DE CIÊNCIAS


E TECNOLOGIA

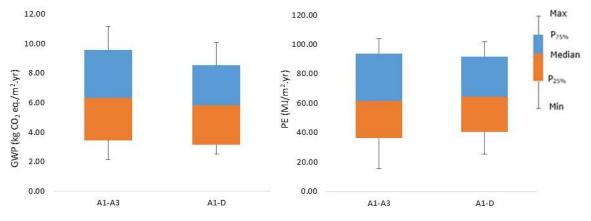
Range of values for GWP in each module

Range of values for PE in each module

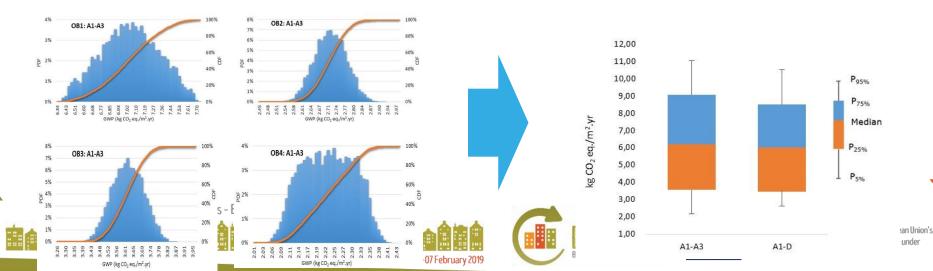
Benchmarks for office buildings

UNIVERSIDADE Ð

COIMBR


FACULDADE

DE CIÉNCIAS


E TECNOLOGIA

Range of values for GWP and PE in A1-A3 & A1-D

Uncertainty propagation and distribution of GWP values

Conclusions

- The proposed approach aims for the harmonization between structural design and sustainability design of buildings, and is based on the concept of 'limit state', which is a concept that is familiar to architects and engineers.
- ✓ In the **limit state of sustainability** the environmental performance of the building is compared with a **benchmark**, given by the average life cycle environmental performance of a set of buildings, with the same typology, in a reference area.

✓ Twofold achievement:

INIVERSIDADE D

FACULDADE

- Benchmarks enable an **easier interpretation of the performance of buildings** and the identification of **best practices**, thus motivating the pursuit of measures leading to an enhanced building performance;
- Benchmarks provide a **transparent yardstick to measure the environmental performance of buildings** and allow to effectively reduce the potential environmental impact of the building stock.

05-07 February 201

