“Businesses throw away hundreds of billions worth of valuable materials because they are not designed for recovery. What is gained on the front end through convenient bonding is lost on the back end through destructive mixing of materials that degrades their quality.”

(Mulhall and Braungart 2013: 76) [8]
Outline of a circular economy

PRINCIPLE 1
Preserve and enhance natural capital by controlling finite stocks and balancing renewable resource flows. ReSOLVE levers: regenerate, virtualise, exchange.

PRINCIPLE 2
Optimise resource yields by circulating products, components and materials in use at the highest utility at all times in both technical and biological cycles. ReSOLVE levers: regenerate, share, optimise, loop.

PRINCIPLE 3
Foster system effectiveness by revealing and designing out negative externalities. All ReSOLVE levers.

Minimise systematic leakage and negative externalities.

Source: EMF
What does research show?

- Research for this paper indicates the circular economy is still a little known initiative to almost everyone not directly involved in it. Construction and the built environment are no different.

- Only 9% of the global economy is circular (EMF).

- New initiatives like “A line in the sand: Global Commitment to eliminate plastic pollution at its source” have over 250 large organisations (Pepsico, IKEA, H&M, Unilever) committing to the circular economy. All supply/value chains are likely candidates for change.

So what can the supply/value chain in the built environment do about becoming more circular, and then fully circular?
Approach – Start at the easiest points:

One, Identify what is ALREADY circular or close to circularity in existing processes/systems and known frameworks (BIM, LEAN, BREEAM, etc.) that are readily understood by the stakeholders within the firm and its wider industry.

Two, Extrapolate against a circular economy enablers/principles such as the Ellen MacArthur Foundation’s ReSOLVE framework.

Three, Evaluate both factors and identify intervention points for where your process/system is today and what the next iteration can be.

The goal is “whole systems thinking” beyond the immediate process or product.
ReSOLVE Framework

<table>
<thead>
<tr>
<th>REGENERATE</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>EXAMPLES</td>
<td></td>
</tr>
<tr>
<td>Shift to renewable energy and materials</td>
<td></td>
</tr>
<tr>
<td>Reclaim, retain, and restore health of ecosystems</td>
<td></td>
</tr>
<tr>
<td>Return recovered biological resources to the biosphere</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SHARE</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>EXAMPLES</td>
<td></td>
</tr>
<tr>
<td>Share assets (e.g. cars, rooms, appliances)</td>
<td></td>
</tr>
<tr>
<td>Reuse/secondhand</td>
<td></td>
</tr>
<tr>
<td>Prolong life through maintenance, design for durability, upgradability, etc.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>OPTIMISE</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>EXAMPLES</td>
<td></td>
</tr>
<tr>
<td>Increase performance/efficiency of product</td>
<td></td>
</tr>
<tr>
<td>Remove waste in production and supply chain</td>
<td></td>
</tr>
<tr>
<td>Leverage big data, automation, remote sensing and steering</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LOOP</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>EXAMPLES</td>
<td></td>
</tr>
<tr>
<td>Remanufacture products or components</td>
<td></td>
</tr>
<tr>
<td>Recycle materials</td>
<td></td>
</tr>
<tr>
<td>Digest anaerobically</td>
<td></td>
</tr>
<tr>
<td>Extract biochemicals from organic waste</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>VIRTUALISE</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>EXAMPLES</td>
<td></td>
</tr>
<tr>
<td>Books, music, travel, online shopping, autonomous vehicles etc.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>EXCHANGE</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>EXAMPLES</td>
<td></td>
</tr>
<tr>
<td>Replace old with advanced non-renewable materials</td>
<td></td>
</tr>
<tr>
<td>Apply new technologies (e.g. 3D printing)</td>
<td></td>
</tr>
<tr>
<td>Choose new product/service (e.g. multimodal transport)</td>
<td></td>
</tr>
</tbody>
</table>
The Case Studies

Identifying intervention points in pre-existing process

Wolwedans, Namibia – Eco Tourism
461 Dean St, Brooklyn – 32 Floor Modular Rental
Sainsbury’s, UK – 2800 Assets
Wolwedans – simple construction, high circularity

- ReSOLVE - Natural and social capital CAN result in revenue generation – REGENERATE
 - 200,000ha reserve, self-sustaining, high quality, low-impact tourism, 4 other properties, regeneration, bio-diversity and resilience of the reserve.

- Building construction - OPTIMISE / LOOP / EXCHANGE/ REGENERATE
 - minimal environmental impact, simple, non-toxic materials, re-usable, reversible and modular construction. Disassembly of structures. Solar for lighting and hot water

- Operations – REGENERATE / SHARE / OPTIMISE / LOOP / EXCHANGE
 - shared centralised basecamp and infrastructure, sophisticated water pump house and filtration system, central office, stores and inventory, staff housing and a staff training academy, each operation feeds another; desert landscape necessitates a circular exchange of regenerating and optimising activities.

- Wolwedans - High level circularity ReSOL_E in its building construction, operations and facilities management and social and natural capital
The robust amenity offering at 461 Dean Street is comprised of a sky lounge and rooftop terrace, state of the art fitness center, yoga, and dance studio, work-from-home lounge with a catering kitchen and dedicated party room, a game room with billiards and ping-pong, and a children's playroom.
Floors Above Ground
32
Floors Below Ground
2
of Elevators
4
Tower GFA
32,164 m² / 346,210 ft²
of Apartments
363

Height: Occupied
95.1 m / 312 ft

Height: To Tip
109.4 m / 359 ft

Height: Architectural
109.4 m / 359 ft

Source: Skyscrapercenter.com
SBE19 Brussels - BAMB: CIRCPATH

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 642884.
• **461 Dean Street - The ReSOLVE Framework and Design for Manufacture and Assembly (DfMA), (offsite and modular construction)**

• **New business model – OPTIMISE / VIRTUALISE / EXCHANGE**
 • Factory vs Onsite.
 • prefab modules, fast time to market, reduced onsite waste, project and budget over-runs. Reduced transportation to/from the building site

• **Community and social capital – REGENERATE / SHARE / OPTIMISE / EXCHANGE**
 • Non-jurisdictional union workers assembled 930 modules, resulted in 363 apartments in 23 layouts.
 • 50% units shared with mid-to-low income housing, regenerated a declining neighbourhood.
 • High-quality construction prevents decay or ‘undesirability’ of the building over time. LEED Silver certification,

• **The construction process – SHARE / OPTIMISE / LOOP / VIRTUALISE / EXCHANGE**
 • Efficiently mapping systems in a clean dry environment
 • Simplified by using “IKEA-style” drawings vs construction drawings
 • Guaranteed fit first time (unlike in the linear version) LEAN frameworks for optimised activities – module/material delivery, staging and installation
 • Two parallel tracks (onsite/offsite) reducing time-to-market.
 • Modules shipped at night avoiding community disruption.
461 Dean Street - high level circularity elements towards ReSOLVE framework

Future iteration mirrors BAMB - Immense opportunities for asset owners, construction, suppliers and manufacturers. Everything-As-A-Service

- Framework for full circularity or cradle to cradle future state
- Modularity, disassembly and long term adaptability, end-of-life strategies
- Reusable materials, material passports and associated take-back systems by the suppliers of the facades, windows, etc.
- Closed loop material control
- Leasing, performance and product-service systems, reverse logistics, appliance-as-a-service, lighting-as-a-service, etc.
- Circular economy to scale within the building industry and supply chain

Source: Wired.com
Sainsbury’s – ‘One Property’
2800 physical assets - Digitised in a CDE!

- Sainsbury’s digital estate – SHARE / OPTIMISE / VIRTUALISE / EXCHANGE

- Sainsbury’s digitised all 2D drawings, data and information to a Common Data Environment. A 3-year endeavour fully utilizing BIM (without 3D models), CDE and a technology stack they already had.

- On a macro level they have a ‘one property’ view of all assets and realised 20% ‘shadow space’. And that’s just the start of what’s possible.
 - Consider the possibility of Digital Twins - performance, exchange or sharing opportunities represented by utilizing IoT sensors consistently ‘reporting back’ real-time behaviour. Aggregating combined data across several assets show patterns of usage, footfall, temperatures, and much more, can lead to reconfigured workforce patterns and reduced energy consumption.

- A fascinating look at how they accomplished the project: Sainsbury’s Building and Maintaining a Digital Estate and https://bit.ly/2Srwy9m
Information Management – A 21st Century Problem?

Source: Sainsbury’s Video
Sainsbury’s Asset Hierarchy

- Asset Types
 - Store (Trading)
 - Land (Trading)
 - Building (Non Opp)
 - Land (Non Opp)

- Occupancy Types
 - Supermarkets
 - Convenience
 - PFS
 - Car Park
 - SSC
 - Depots
 - Argos
 - Habitat
 - Concession
 - Vacant
 - Non Opp

Store development life-cycle

Source: Sainsbury’s Video
Conclusion

• Is the built environment close to achieving Circularity? Clearly not. But it’s an exciting time for innovation in an industry that’s ripe for disruption.

• Frameworks help practical implementations into circularity but context is very important for each case study.

• Identifying intervention points becomes easier when existing circularity elements are identified and used as a jumping off point. When you get here, don’t re-invent the wheel. And finally, think in whole systems, not parts of a system.

• Two great new circular projects:
 • https://circl.nl/themakingof/en/
 • [Bloc.nl, The Dutch Mountains](https://bloc.nl/)

Thank you!

6-Point Plan for interventions within:

1. secure executive commitment/ sponsorship, budget and task group

2. ensure understanding of CE – conduct an audit or benchmarking exercise against built-for-purpose circular designed projects for clarity and signposting

3. conduct PESTLE/SWOT analysis for market gaps/goal identification and align with capabilities, tools, and business strategy

4. identify low hanging fruit for early (and easy) wins building commitment internally/externally

5. CE programme integration that is reviewed, measured, revised and reported on

6. publicise efforts through marketing, networks and partnerships.
 - Paper has more info: https://bit.ly/2Srwy9m
References

[2] Ritzin G and Sandstrom G O 2017 Procedia CIRP Barriers to the Circular Economy - Integration of Perspectives and Domains 64 7-12 - https://ac.els-cdn.com/S221282711730149X/1-s2.0-S221282711730149X-main.pdf?_tid=d9023b0-11e5-40b-c-405-ab21-90121294c193&acdnat=1514107425_e5f1e1665c6e21c5c4f4a7a690ce0ce

[22] Turner Construction website 461 Dean Street https://www.turnerconstruction.com/experience/project/8440/461

[26] Bundles.nl https://www.bundles.nl/lover-ons/

References

[29] Phil Bernstein Autodesk / TEDxYale 2015 The future of making buildings Video
https://www.youtube.com/watch?v=Kg0ghG1DAkk

https://www.theb1m.com/videos/what-is-scan-to-bim

https://ac.els-cdn.com.brad.idm.oclc.org/S1474034617305360/1-s2.0-S1474034617305360-main.pdf?_tid=59577b1646014736-ae9-7fa5b079223e&accioma=1541163717_2e94877c51498013c5b167b5b079e2

[32] Sainsbury’s Annual Report

[33] Sainsbury’s – Building and Maintaining a Digital Estate
https://www.youtube.com/watch?v=KFMcccUKLM

[34] GE.com, 2016 Digital twin for the digital power plant,

[35] Datta S, 2017 Emergence of digital twins Is this the march of reason? MIT Forum for Supply Chain Innovation
http://hdl.handle.net/1721.1/106496

[36] Deloitte.com 2017 Industry 4.0 and the digital twin, manufacturing meets it match

[37] Circl.nl 2017 The making of Circl
https://circl.nl/themakingof/en/

[38] Bloc.nl, The Dutch Mountains
https://www.bloc.nl/bloc-works/the-dutch-mountains/

[39] TheDutchMountains.nl
https://www.thedutchmountains.nl/#circulair