Financial Assessment of Material Reuse in Building Products:

Comparing cost drivers in wood, concrete, and glass reuse

Julia Nußholz & Katherine Whalen,
International Institute for Industrial Environmental Economics (IIIEE) Lund University
Sustainability evaluation of a business model for material reuse
Background

Use of secondary materials for producing building materials is one way to reduce embodied emissions of buildings (Nußholz, Nygaard Rasmussen, Milios, 2019)

Background

- Economic potential and business models around material reuse are emerging
Background

• However, many financial barriers to economic application remain (Adams et al. 2018)
 • low value of post-use materials
 • labor-intensive recovery processes

→ reuse if often more expensive than new!
Background

• To help diffusion of business models for material reuse in the building sector better understanding of their financial viability is needed
• Fierce competition with linear producers
Research objective

• advance understanding of the financial structure of reusing different end-of-life materials for building materials by presenting a cost structure analysis of three reuse solutions

• Reuse solutions developed by a Scandinavian case company for wood, glass, and concrete.
Research question

• What are the main cost drivers of the three different materials streams and applications?
Method

Case study research

• A comparative case study design of a Scandinavian company that developed a business model for three commercialized reuse solutions
 • Wood for panels (By-product use)
 • Glass for windows (Material reuse)
 • Concrete for flooring and walls (Material recycling)
Method
Method

Cost structure analysis

• A cost structure analysis was conducted to identify the cost associated with various value chain steps, their inputs and activities

WHY?:

• Understanding the cost structure can indicate
 • Competitive (dis)advantages
 • Feasability of reuse
 • Suitable policy interventions
Method

• Organizing invoices according to production step
 • Material sourcing,
 • R&D,
 • Preparation for reuse,
 • Production, and
 • Installation.

• Labour costs for project management not included
Data collection

• Data was collected from company’s accounting data and semi-structured interviews.

• Company employees were consulted to verify accurate understanding of financial data and value chains.
Findings: Glass

Cost Factors - Circular Window

- Material sourcing (secondary)
- Material sourcing (primary)
- R&D
- Preparation for reuse
- Production
- Installation

SBE19 Brussels - BAMB: CIRCPATH

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 642384.
Findings: Wood

Cost factors - Circular Wood Panels

- Material Sourcing (secondary): 50%
- Production: 40%
- Installation: 10%
Findings: Concrete
Comparing cost drivers

Similarities:
• Manufacturing was a significant share of total costs

Differences:
• Very different costs for material sourcing
• Virgin materials can be a considerable part of costs
• Different number of production steps needed
• Legal requirements can drive costs (e.g. high R&D costs for concrete)
Discussion and limitations

• First production line only
• In future:
 • higher efficiency
 • no start-up costs
 • no installation costs
• Limited generalizability
• No costs for project management
Future research

• Comparison with linear value chain
• Sustainability value (environment, economy, society) disregarded
 • other value flows for other stakeholders beyond the firms’ financial value
Conclusions – So what?

• More diversified picture than common CE narrative on higher labour costs, but lower material costs
• Primary material input can be a significant cost driver
• More integrated value chains needed to be competitive (otherwise high transaction costs)
• Better understanding of competitive (dis)advantages with linear producers needed
Thank you for your attention!

Julia.nussholz@iiiee.lu.se