

Decarbonizing the cement and concrete sector: Integration of the full value chain to reach net zero emissions in Europe

Aurélie Favier, Chair for Sustainable Construction, ETH Zurich, Switzerland Guillaume Habert, Chair for Sustainable Construction, ETH Zurich, Switzerland Catherine De Wolf, Structural Exploration Lab, EPFL, Switzerland Karen Scrivener, Laboratoire des Matériaux de Construction, EPFL, Switzerland

SBE19 Brussels - BAMB-CIRCPATH

Objective:

How to decarbonise cementitious construction sector in Europe in the short, medium and long term ?

05-07 February 2019

It is a follow up of the UNEP study which looked only Target only at cement and concrete

Strategy: Look at the complete value chain

Different level of actions among all stakeholders

Interviews with

- European associations
- Constructors
- Cement producers

05-07 February 2019

Technology assessment: Look at all technologies available along the value chain

Less CO₂ in clinker production

Dry technologies

Alternative fuels

Carbon capture and storage

Alternative binders

Less clinker in cement (or blended in concrete)

% SCM substitution

Technologies used by cement and concrete roadmaps.

& by IPCC Chapter on industry

05-07 February 2019

Technology assessment: Look at all technologies available along the value chain

Less CO₂ in clinker production

Dry technologies

Alternative fuels

Carbon capture and storage

Alternative binders

Less clinker in cement (or blended in concrete)

% SCM substitution

Less cement in

concrete

Less concrete in buildings

Optimization

Exposure class

& architects And absent of both Industry and buildings chapter in IPCC

05-07 February 2019

Technologies used by engineers

Alternative raw materials including recycling fines

SBE19 Brussels - BAMB-CIRCPATH

Detail concrete technology :

Over consumption of cement can be reduced by better granular packing

Improved packing

Sce: Passer Alexander, Deutsch Richard, Beton-LCA – Wie grün ist grau?, in: 2018.

Detail concrete technology :

Over consumption of concrete can be reduced by better structural design

> 10 x

Optimization

Bejing Olympic Stadium, China Arup, 2008

London Olympic Stadium, UK Buro Happold, 2012

4'500 kgCO₂ /seat

450 kgCO₂ /seat

Sce: De Wolf, Catherine, Optimization in Structures Scenario, MIT (2018).

Definition of scenarios :

2 main bottlenecks for innovation in construction have been identified:

05-07 February 2019

- Lack of investment
- Lack of integration of the different stakeholders in the value chain

Scenario 1: High investment Technology breakthrough

SCENARIO 1:

BREAKTHROUGH TECHNOLOGY

DEGREE OF IMPLEMENTATION

Scenario 2 & 3: Low investment Optimisation & circular economy

SCENARIO 3: STRUCTURAL OPTIMISATION	DEGREE OF IMPLEMENTATION										
	2015			2030			2050				SCALE
	RMC	PRECAST	MORTAR	RMC	PRECAST	MORTAR	RMC	PRECAST	MORTAR		
Efficiency of clinker production	80%			83%			84%			(Clinker
Alternative fuels	33%			40- 60%			80%			(Cement
Alternative raw materials including recycling fines	3-4 %			10%			20%				Clinker
Clinker substitution	23%			30%	30%	30%	40%	40%	40%	(Cement
Binder per m ³ of concrete per MPa	8 kg/ m³ /MPa			5 kg/ MPa	5 kg/ MPa	_	5 kg/ MPa		5 kg/ m³ /MPa	_ (Concrete
Appropriate use of standards	300 kg/m³			292 kg/m³	-	-	285 kg/m³	-	-	(Concrete
Re-use of cement	N/A			-	0-10%	-	-	10-20%	-	1	Structure
Optimization	N/A				10-20%				20-40%	ŝ	Structure
CO ₂ savings compared to 1990		40%			55%			75%			

Different implication of the stakeholders along the value chain

Dry technologies

Hzürich

• Dry technology implementation \rightarrow Savings by cement producers

Alternative fuels

• Alternative fuels \rightarrow Savings by waste managers

% SCM substitution

- %SCM → Savings by cement producers
 - \rightarrow Savings by the construction companies

Alternative raw materials including recycling fines

• % fine recycling \rightarrow Saving as demolition recycling companies

Different implication of the stakeholders along the value chain

Improved packing

• Improve packing & reduce overestimation \rightarrow Savings by concrete producers

Exposure class

• Use appropriate exposition class \rightarrow Savings by engineering offices

Optimization

Optimise structure → Savings by engineering offices

Re-use of cement

• Reuse structure \rightarrow Savings by demolition companies

Carbon capture and storage

Carbon Capture and Storage → Savings by cement producers

SBE19 Brussels - BAMB-CIRCPATH

Different implication of the stakeholders along the value chain

Reference scenario

Different implication of the stakeholders along the value chain

Different implication of the stakeholders along the value chain

Scenario 2 - Integration of value chain

Different implication of the stakeholders along the value chain

we can achieve similar results with much lower investment by implementing savings along the value chain

Stakeholder involvement

Barriers to act

- Dry technology implementation
 Savings by cement producers
- Alternative fuels
 Savings by waste managers
- %SCM
 - → Savings by cement producers
 - → Savings by the construction companies

SBE19 Brussels - BAMB-CIRCPATH

Require high investment on old infrastructures or closing old cement plants

Require better waste management and increase of incineration practices inside EU

As EU will run out of GBFS and FA, it requires investment in calciner for the development of calcined clays

Higher SCM content is slowing down the construction speed. It requires more formwork on construction site (space and cost pb) or slower demolding (productivity pb)

% fine recycling
 Saving as demolition recycling companies Require good separation technique on demolition site (time pb) and better crushing & sorting technique on recycling facilities (cost pb)

Stakeholder involvement

Barriers to act

- Improve packing & reduce overestimation
 - \rightarrow Savings by concrete producers
- Use appropriate exposition class
 - \rightarrow Savings by engineering offices
- Optimise structure
 - \rightarrow Savings by engineering offices
- Reuse structure
 - \rightarrow Savings by demolition companies
- Carbon Capture and Storage
 - → Savings by cement producers

SBE19 Brussels - BAMB-CIRCPATH

But it requires more silos (space pb) and can lead to a loss of robustness of the mix (higher risk for customers)

But it requires more time for design and forces engineering office to take a risk in case of problem (no constraints in bidding call)

But it requires more time for design and forces engineering office to take a risk in case of problem (no constraints in bidding call)

But it requires more time for deconstruction and space for storage

But it involves high investment (CAPEX) and will induce additional cost for cement production (OPEX)

05-07 February 201

Indicators KPI to involve all actors

We need indicators by stakeholders

- Upstreams indicators already exist
- Downstream (building scale) also voluntary basis
- No indicators to involve concrete companies, engineering offices

Indicators KPI to involve all actors

We need indicators by stakeholders

- Upstreams indicators already exist
- Downstream (building scale) also voluntary basis
- No indicators to involve concrete companies, engineering offices

Example of possible indicators

- For cement producers: a clinker with less than 0.7 t CO₂/tclinker
- For concrete producers: a standard concrete containing less than 3.5 kg clinker/m³/MPa
- For structural engineers: a structure containing less than 250 kg CO₂/ m² of building
- For construction companies: a building containing less than 500 kg CO₂/m²

Indicators KPI to involve all actors

We need indicators by stakeholders

- Upstreams indicators already exist
- Downstream (building scale) also voluntary basis
- No indicators to involve concrete companies, engineering offices

Example of possible indicators

SBE19 Brussels - BAMB-CIRCPATH

- For cement producers: a clinker with less than 0.7 t CO₂/tclinker
- For concrete producers: a standard concrete containing less than 3.5 kg clinker/m³/MPa
- For structural engineers: a structure containing less than 250 kg CO₂/ m² of building
- For construction companies: a building containing less than 500 kg CO₂/m²

Example of possible incentives to drive transformation

- Extra m² allowance for contractor when using low carbon to counterbalance reduction of productivity
- Subsidies for extra silo capacities in concrete and gravel producers

Change in the risk culture

Change in the risk culture

Change in the risk culture

(From D. Hall, 2017)

Development of integrated Project delivery

Change will happen

McKinsey Global Institute industry digitization index; 2015 or latest available data

¹Based on a set of metrics to assess digitization of assets (8 metrics), usage (11 metrics), and labor (8 metrics). ²Information and communications technology.

Potential of digitalization

Possibilities to involve all stakeholders through digitalization

Example 2: Visual monitoring of supply chain.

Sce: Irizarry et al., 2013. Integration BIM and GIS to improve the visual monitoring of construction supply chain management. *Automation and Construction*

Potential of digitalization

Possibilities to involve all stakeholders through digitalization

Example 3: Tracking of construction companies and task planning.

Sce: Aram et al., 2013. Requirement for BIM platforms in the concrete reinforcement supply chain. Automation and Construction

Conclusion *Climate change reduction potentials*

- Integration of efforts all along the value chain allow to reach 2050 objectives
- Reduces the need for carbon capture and storage and allow short term and low cost roadmap for European construction industry

Conclusion *Future development in the construction sector*

- An increase in the digitalization of the sector will occur, leading to more prefabrication and the use of building information modelling.
- Resource conservation and the circular economy approach are gaining traction in economic and political circles. The construction industry will have to position itself in the conversation.
- Breakthrough technologies all require very high investment costs and will not be implemented in due time to counteract climate change. The industry is not willing to invest so much in the current situation.

Thank you for your attention

Different implication of the stakeholders along the value chain Shared efforts or concentrated on the cement sector

35% ___ 30% ____ CO₂ emission reduction 25% Demolition companies Construction 20% _ companies Engineers 15% Concrete producers 10% -Cement producers 5% Waste management 0% Scenario 1 Reference Scenario 2 Scenario 3 scenario Breaktrough Concrete Structure

05-07 February 2019

