Cradle to Cradle & Whole-life Carbon assessment

Barriers and opportunities towards a circular economic building sector

Noemi Futás Co-authors: Kartikeya Rajput, Rosa Schiano-Phan UNIVERSITY OF WESTMINSTER# Chapman *BDSP

SBE19 Brussels - BAMB-CIRCPATH

05-07 February 2019

Presentation Outline

- > From linear to circular
- > Cradle to Cradle
- > Whole-life Carbon assessment
- > Case study LSE-CBR, London
- > Towards a circular economic building sector

From linear to circular

SBE19 Brussels - BAMB-CIRCPATH

From linear to circular

詰倉

05-07 February 2019

BUILDING AS MATERIAL BANKS

From linear to circular

05-07 February 2019

Cradle to Cradle

Waste Equals Food Use Current Solar Income Celebrate Diversity

SBE19 Brussels - BAMB-CIRCPATH

Design for a Beneficial Footprint

05-07 February 2019

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 642384.

radle to Cradle

Cradle to Cradle

Waste Equals Food Use Current Solar Income Celebrate Diversity

SBE19 Brussels - BAMB-CIRCPATH

Cradle to Cradle[®] in the Built Environment Design for a Beneficial Footprint

05-07 February 2019

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 642384

radle to Cradle

Whole-life Carbon assessment

Building Assessment Information	Life Cycle Stages			Included in Assessment
Building Life Cycle Information	Product Stage	A1	Raw material supply	Yes
		A2	Transport	Yes
		A3	Manufacturing	Yes
	Construction Process Stage	A4	Transport	Yes
		A5	Construction Installation Process	Yes
	Use Stage (60 years)	B1	Use	Yes
		B2	Maintenance	Yes
		B3	Repair	Yes
		B4	Refurbishment	Yes
		B5	Replacement	No
		B6	Operational Energy Use	Yes
		B7	Operational Water Use	Yes
	End of Life Stage	C1	De-construction/Demolition	Yes
		C2	Transport	Yes
		C3	Waste Processing	Yes
		C4	Disposal	Yes
Beyond Building Life Cycle	Benefits and Loads	D	Reuse - Recovery - RecyclingPotential	No

Whole-life Carbon assessment

Building Assessment Information	Life Cycle Stages			Included in Assessment
Building Life Cycle Information	Product Stage	A1	Raw material supply	Yes
		A2	Transport	Yes
		A3	Manufacturing	Yes
	Construction Process Stage	A4	Transport	Yes
		A5	Construction Installation Process	Yes
	Use Stage (60 years)	B1	Use	Yes
		B2	Maintenance	Yes
		B3	Repair	Yes
		B4	Refurbishment	Yes
		B5	Replacement	No
		B6	Operational Energy Use	Yes
		B7	Operational Water Use	Yes
	End of Life Stage	C1	De-construction/Demolition	Yes
		C2	Transport	Yes
		C3	Waste Processing	Yes
		C4	Disposal	Yes
Beyond Building Life Cycle	Benefits and Loads	D	Reuse - Recovery - RecyclingPotentia	No WLC Potential

05-07 February 2019

Cradle to Cradle & Whole-life Carbon assessment

Lack of

- unified and measurable framework
- detailed case studies
- post occupancy evaluation
- information on embodied carbon in buildings

Case Study to link theory with practice

- Short project introduction
- Embodied carbon study (LCA)
- Barriers to comprehensive, comparable LCA
- How the LCA informed the design

19,000 m² £ 90 million completion 2019

Faculty offices, teaching facilities, support spaces for Social Sciences faculty

SBE19 Brussels - BAMB-CIRCPATH

05-07 February 2019

(a)

Collaboration: Client! Passive Design Strategies Reversible Building Design Adaptable, Human Design Zero Carbon in operation

SBE19 Brussels - BAMB-CIRCPATH

0

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 642384.

Rogers

Harbour

+ Partners

Stirk

Chapman

BDSP

Outcome of LCA varies depending on

- Benchmarks available

Outcome of LCA varies depending on

- Benchmarks available

Atkins Carbon Critical Tool: Medium rise office block 650 to 1600 kgCO_{2e}/m²

Outcome of LCA varies depending on

- Project stage (available information varies)

Outcome of LCA varies depending on

- Project stage (available information varies)

How the LCA informed the design:

LSE-CBR measures to decrease embodied carbon

How the LCA informed the design:

LSE-CBR measures to decrease embodied carbon

- Reduction in non-usable areas
- Improvements in material efficiency
- Sensible façade module design
- Improvement in piling design: volume reduction
- Increase of recycled steel in reinforced concrete

SBE19 Brussels - BAMB-CIRCPATH

How the LCA informed the design:

LSE-CBR measures to decrease embodied carbon

- Reduction in non-usable areas
- Improvements in material efficiency
- Sensible façade module design
- Improvement in piling design: volume reduction
- Increase of recycled steel in reinforced concrete

1kg virgin steel:2.113 kgCO2e1kg recycled steel:0.462 kgCO2e

Outcome of LCA varies depending on

- Information on materials (EPD etc lack info)

Outcome of LCA varies depending on

- Information on materials (EPD etc lack info)
 - Source of fabrication energy
 - Distance travelled
 - Production method
 - Maintenance and refurbishment effort
 - Lifespan
 - Ease of disassembly

SBE19 Brussels - BAMB-CIRCPATH

Outcome of LCA varies depending on

- Time span considered (60 vs 100 years)

Outcome of LCA varies depending on

- Time span considered (60 vs 100 years)

Low initial embodied energy ≠ Low whole-life embodied energy

Outcome of LCA varies depending on

- Time span considered (60 vs 100 years)

Low initial embodied energy **≠** Low whole-life embodied energy

Embodied Carbon at Product Stage (A1-A3)823 $kgCO_{2e}/m^2$ Operational Carbon at Use Stage (B1)2282 $kgCO_{2e}/m^2$

Embodied Carbon = 21.6 years of Operational Carbon

Predicted Total Carbon Footprint (60 years)

In kgCO_{2e}/m² 3,291

In kgCO_{2e} 51,031,969

Life Cycle Stages split (in %)

SBE19 Brussels - BAMB-CIRCPATH

Product stage	(A1-A3)	25.0%
Construction stage	(A4-A5)	1.4%
Use stage	(B1-B6)	72.5%
End of Life stage	(C1-C4)	1.1%
Beyond Life cycle	(D)	n/a

05-07 February 2019

Project Study lacks Beyond building lifecycle (Reuse, Recovery, Recycling Potential)

05-07 February 2019

Life Cycle Stages split (in %)

SBE19 Brussels - BAMB-CIRCPATH

Product stage	(A1-A3)	25.0%
Construction stage	(A4-A5)	1.4%
Use stage	(B1-B6)	72.5%
End of Life stage	(C1-C4)	1.1%
Beyond Lifecycle	(D)	n/a

Combine Cradle to Cradle & Whole-life Carbon assessment

C2C + Criteria of other Certification Systems Operational Carbon (as in LCA) + Embodied Carbon

Combine Cradle to Cradle & Whole-life Carbon assessment

Combine Cradle to Cradle & Whole-life Carbon assessment

Combination of C2C & WLC indicators

-> Potential to improve

-> Opportunity of a comprehensive, unified assessment framework for a circular building sector

0

Ο

Ο

 \bigtriangleup

Ο

 \square

 \square

SBE19 Brussels - BAMB-CIRCPATH

1. Closed-loop Design - Design for Well-Being

- (daylight, air & water quality, (bio-) diversity, water management, renewable energies)
- Design for Disassembly
- Collaboration w. Steakholders 0
- -> Integrated Design: BIM

6. End of Life

- De-Construction (Instructions \square & Take-Back Services) - Biological Degradation - Reuse / Recover / Recycle
- -> "Material Bank"
- -> Avoid Demolition (Waste
- Processing, Transport, Disposal)
- -> Circularity Passports
- -> Post-Occupancy Evaluation

5. Use

- Maintenance
- Repair / Refurbishment
- Replacement: Leasing?
- Operational Energy Use
- Operational Water Use
- -> Lifespan?
- -> BMS + Resource Locator

2. Raw Materials

- Transport
- -> Resource Management
- -> Resource Locator on site

3. Manufacturing

- Fabrication Energy used
- -> Precast / In-situ?
- Carbon Management
- Water Stewardship
- Material Health
- Social Fairness
- -> Material Passports
- -> Circularity Passports

 Δ

Ο

Ο

 Δ \triangle

4. Construction

- Transport \bigtriangleup - Installation Process \bigtriangleup -> Material Application
 - (Quantity: Embodied Carbon)

05-07 February 2019

05-07 February 2019

Õ

0

0

 \bigtriangleup

 \bigtriangleup

Another case study... ECOLAR

Another case study... ECOLAR

http://sde2012.htwg-konstanz.de

Thank you!

Noemi Futás

University of Westminster / Urban Systems Design noemi.futas@gmail.com

SBE19 Brussels - BAMB-CIRCPATH

