

Concept for a BIM-based Material Passport for buildings

Meliha Honic, MSc. Institute for Interdisciplinary Building Process Management Industrial Building and Interdisciplinary Planning, TU Wien

SBE19 Brussels - BAMB-CIRCPATH

BIMaterial

- Research project "BIMaterial: Process-Design for a BIM-based Material Passport"
- Project duration: 01/2016 05/2018
- Funded by the Austrian Ministry for Transport, Innovation and Technology
- Project partners from TU Vienna and industry

Point of departure

- Buildings in the EU are responsible for 50% of all extracted materials and for 35% of greenhouse gas emissions ¹
- The construction sector is the largest consumer of raw materials²
- Aim of the EU: reducing waste, using less virgin materials and increasing recycling rates³

Consumption of raw materials needs to be reduced in the building industry

- Information about the material composition of buildings is required!

¹European Commission, Roadmap to a Resource Efficient Europe, Brussels, 2011

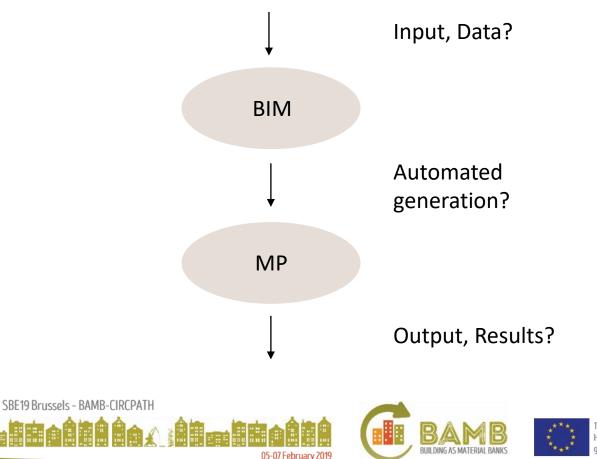
² WEF, World Economic Forum, Shaping the Future of Construction: A Breakthrough in Mindset and Technology, 2016 ³ European Commission, Commission Decision, 2011

What is a Material Passport (MP)?

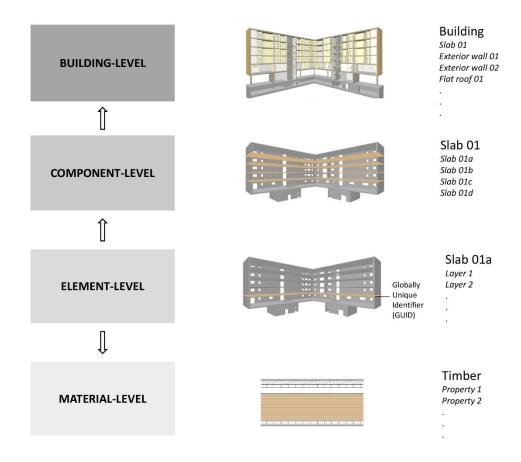
A qualitative and quantitative documentation of the material composition of a building showing the material distribution within a building

- Allocation of materials
- Amount of materials (masses)
- Share of recyclable and waste materials
- Environmental impact of materials
- Separability of materials

"Slab 01"	Layer massive parquet screed concrete	[m] 0,015 0,035
	screed concrete bitumen felt rock wool footfall sound insulation chippings fleece (PE)	0,033 0,001 0,03 0,06 0,0015
	cross laminated timber PE sealing sheeting wood fibre insulaiton board lime-cement plaster	0,26 0,0015 0,2 0,06



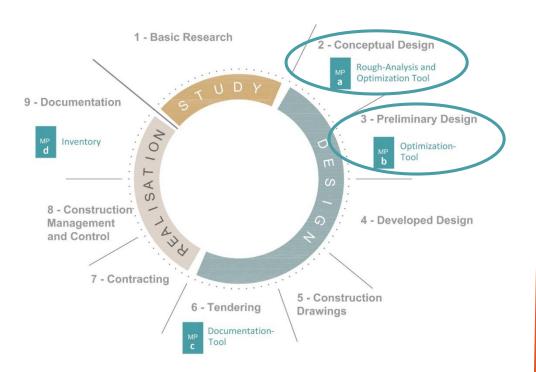
Aim of this research


- Process-Design for a BIM-based Material Passport
- Is a BIM-based and automated generation of a Material Passport possible?

Framework for the BIM-based MP

05-07 February 2019

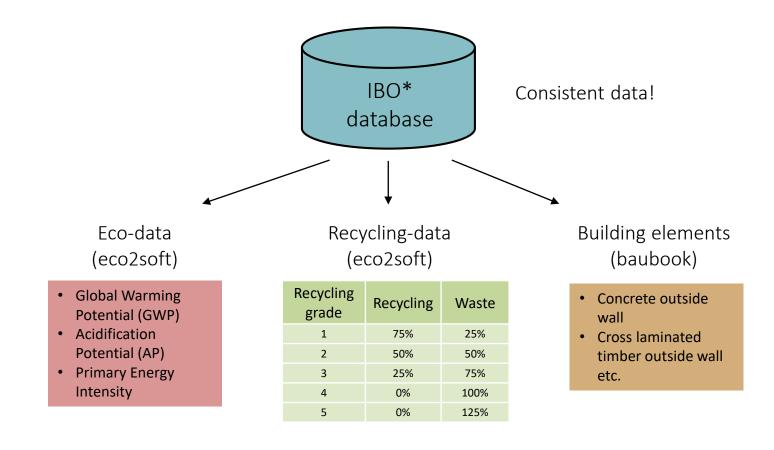
- Mix of bottom-up and topdown approach, starting at element-level
- Based on Markova and Rechberger (2011)



Scope of the BIM-based MP throughout the life-cycle

- MPa: Rough analysis and optimization tool, variant studies (timber vs. concrete)
- MPb: optimization of the selected variant (thickness of layers, material)
- MPc: documentation of the exact material composition
- MPd: basis for a secondary raw materials cadastre

SBE19 Brussels - BAMB-CIRCPATH



05-07 February 2019

Method and data

05-07 February 2019

IBO, Austrian Institute for Building and Ecology http://www.ibo.at/de/oekokennzahlen.htm

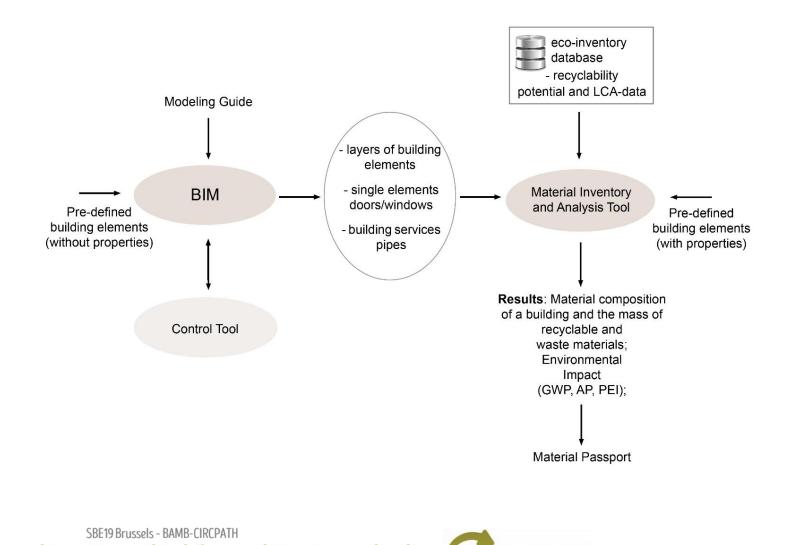
Eco2soft: https://www.baubook.info/eco2soft/ Baubook: http://www.baubook.info/index.php

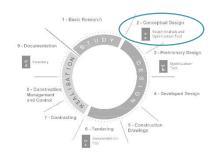
Method and data

 Assessing the share of recycling for a specific material (concrete) in a wall of 1m²(based on the IBO method):

density (eco2soft) * thickness (baubook/BIM)* area (BIM) * recycling grade (eco2soft)

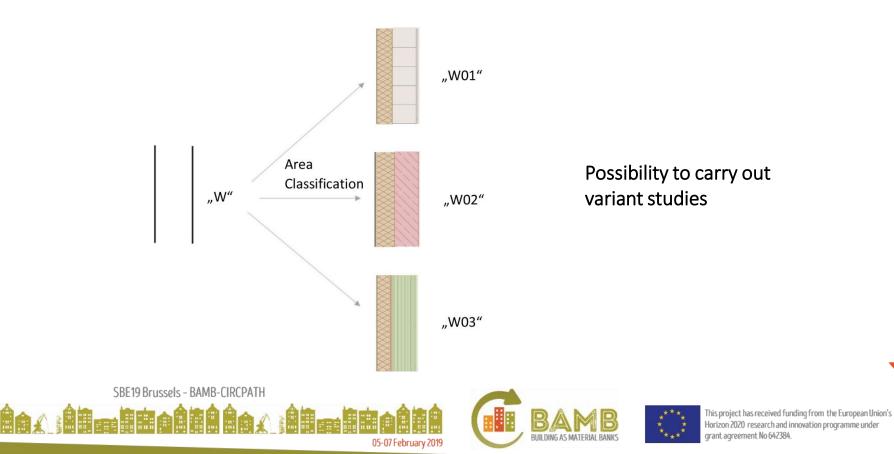
2300 [kg/m³]* **0,18** [m] * **1** [m²] * **50%** [grade 2] = **207** kg


Separability is not considered in the IBO method – partly manual process necessary (pre-defined elements)



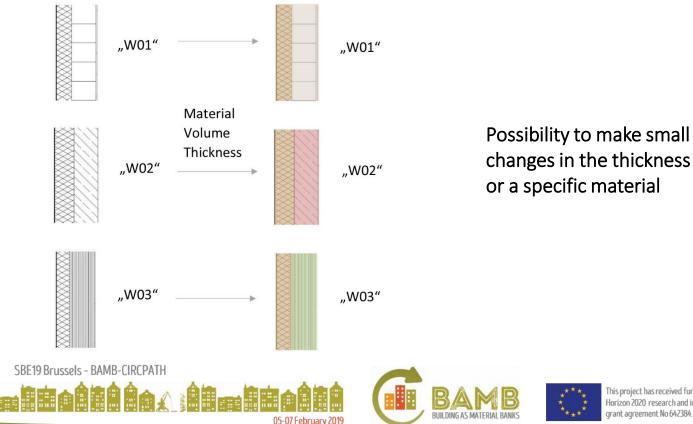
Workflow for generating the MP

05-07 February 2019

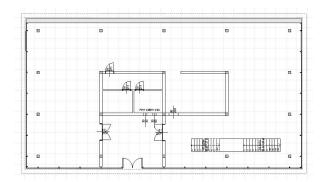

Modelling methodology for MPa

BIM

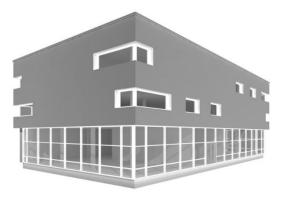
Mono-layered elements without properties

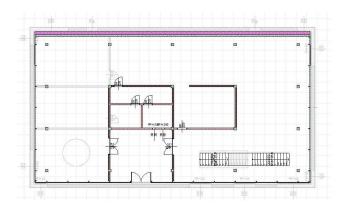

Material inventory and analysis tool Multi-layered elements with properties (MP- and LCA- data)

Modelling methodology for MPb



BIM Multi-layered elements without properties Material inventory and analysis tool Multi-layered elements with properties (MP- and LCA- data)


Case study: office building


- Existing model of the building
- 3 storeys
- Concrete construction

Mono-layered elements (for Mpa)

SBE19 Brussels - BAMB-CIRCPATH

Mono-layered elements replaced by multi-layered elements from the cataolgue (for MPb)

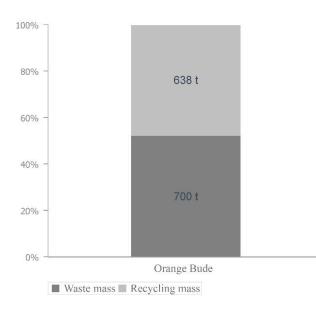
05-07 February 2019

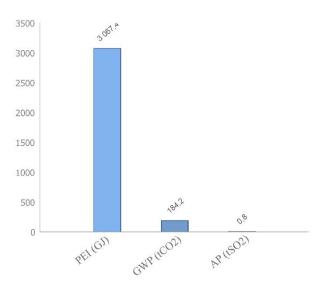
MP-results

RECYCLING POTENTIAL OF THE BUILDING	Recycling grade	Share of recycling (t)	Share of waste (t)
1 (86 - 100%)			
1,5 (72 - 86%)			
2 (58 - 72%)			
2,5 (44 - 58%)	2,5	638	700
3 (31 - 44%)			
3,5 (17 - 31%)			
4 (3 - 17%)			
4,5 (-11 - 3%)			
5 (-2511%)			

DISPOSAL INDICATOR OF THE BUILDING *	Disposal Indicator (EI)
1	
1,5	1,5
2	
2,5	
3	
3,5	
4	
4,5	
5	

* Disposal indicator is element-based and area weighted, it considers the volume, disposal- and recycling- grade.

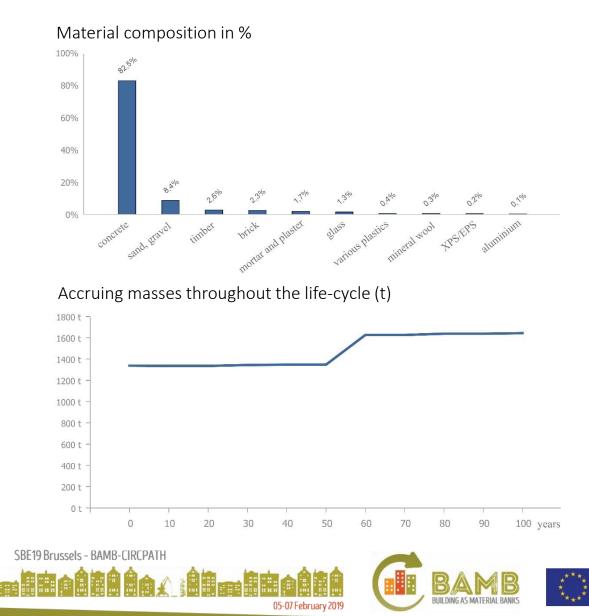


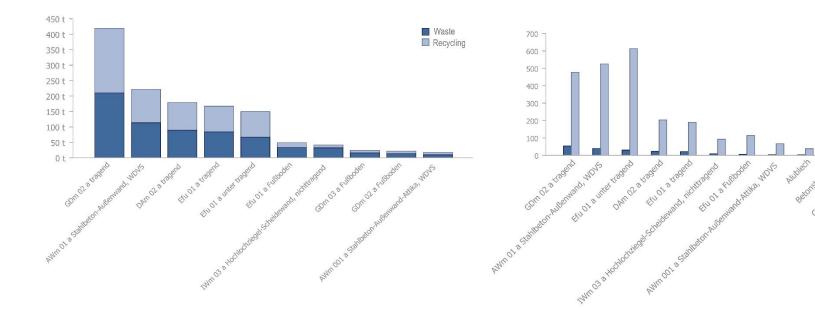


MP-results on building level

Waste vs. Recyclable mass

LCA




MP-results on building level

MP-results on compenent level

LCA

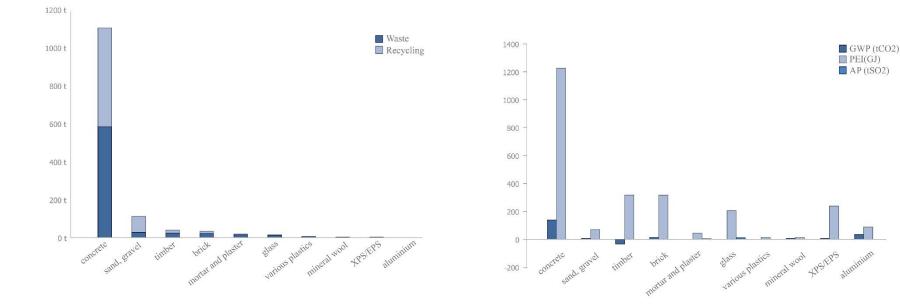
Waste vs. Recyclable mass

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 642384.

GIM OF & HARDER

Betonstitle 218

GWP (tCO2)


PEI (GJ)

AP (tSO2)

Betonstitte 31

MP-results on material level

Waste vs. Recyclable mass

LCA

Conclusions

BIMMATERIAL

Main obstacles:

- Inconsistent nomenclature in different eco-databases
- In early design stages the material composition is not defined yet, therefore the use of pre-defined elements is necessary – restriction for planners
- **Parametrization** of materials in BIM is **not possible** in a consistent way, therefore the Material Inventory and Analysis Tool was used requires specific know-how
- Knowledge regarding materials and sustainability necessary "MPconsultant"

Conclusions

BIMMATERIAL

- Semi-automated generation of the BIM-based MP is possible
- MP enables optimizations in early design-stages
- MP represents a vital contribution to implement circular solutions within the AEC industry
- Basic method (from IBO) could be improved and enriched with data
- New construction rate across Europe is 2% generation of MPs for existing buildings necessary (research project SCI_BIM)

Publications

BIMMATERIAL

- Publications to BIMaterial:
 - Honic, M., Kovacic, I., & Rechberger, H. (2019). Improving the recycling potential of buildings through Material Passports (MP): An Austrian case study. *Journal of Cleaner Production*.
 - Honic, M., Kovacic, I., & Rechberger, H. (2019). BIM-Based Material Passport (MP) as an Optimization Tool for Increasing the Recyclability of Buildings. In *Applied Mechanics and Materials* (Vol. 887, pp. 327-334). Trans Tech Publications.
 - Honic, M., Kovacic, I., Sibenik, G., & Rechberger, H. (2019). Data-and stakeholder management framework for the implementation of BIM-based Material Passports. *Journal of Building Engineering*.
- Information and final report of BIMaterial:
 - https://www.industriebau.tuwien.ac.at/forschung/forschungsprojekte-ip/bimaterial/

New research project

- SCI_BIM Scanning and data capturing for Integrated Resources and Energy Assessment using Building Information Modelling
- Information to SCI_BIM:
 - https://www.industriebau.tuwien.ac.at/forschung/forschungsprojekte-i-p/sci-bim/
- Contact:
 - meliha.honic@tuwien.ac.at

Thank you for your attention!

https://www.industriebau.tuwien.ac.at/

meliha.honic@tuwien.ac.at

