

Circular (de)construction in the Superlocal project

<u>Michiel Ritzen¹</u>, John van Oorschot¹, Michelle Cammans¹, Martijn Segers², Tom Wieland³, Pieter Scheer⁴, Bart Creugers⁵, Nurhan Abujidi¹

- $^{\rm 1}$ Zuyd University of Applied Sciences, Research group SURD, Heerlen, the Netherland
- ² HEEMWonen, Kerkrade, the Netherlands
- ³ Jongen Construction, Kerkrade, the Netherlands
- ⁴ Dusseldorp, the Netherlands
- ⁵ SeC Architects, the Netherlands

Content of this presentation

- 1. Background
- 2. Superlocal
- 3. Apartment building
- 4. Housing unit
- 5. conclusions

A circular built environment is based on 100% life cycle renewable energy, and all materials used within the system boundaries are part of infinite technical or biological cycles with lowest quality loss as possible Ritzen, 2017.

Only 3% of construction materials are recycled in the Netherlands.

Sorting	Material	Waste process		
On- site	Stones	Recycling in concrete industry Base-material		
Off- site	Metals Sorting residu Wood Mixed Asbestos Plastics Glass Paper Insulation	Metal recycling Glass Paper recycling Chipboard Unknown recycling Export unknown recycling Incineration - green energy recovery Incineration - energy recovery Secondary fuel Export energy recovery		
		Export combustion Landfill Unknown Unknown export VIRBAN INNOVATIVE ACTIONS		

UIA URBAN INNOVATIVE ACTIONS

European Regional Development Fund

Superlocal

Apartment building

Apartment building

Apartment building

material	quantity (ton)	embodied energy (GJ)	embodied CO2 (ton)	shadowcosts (€)
aluminium	1.03E+01	1.59E+03	8.45E+01	2.11E+03
asbestos	1.81E+02	1.34E+03	2.82E+02	7.05E+03
divers	1.78E+01	2.97E+02	6.23E+00	1.56E+02
ceramique elements	4.40E+01	5.50E+02	3.41E+01	8.52E+02
concrete	1.30E+04	1.33E+04	1.97E+03	4.93E+04
copper	7.45E+00	1.52E+02	9.81E+00	2.45E+02
glass	1.75E+01	4.26E+02	2.56E+01	6.40E+02
masonry	6.38E+01	1.92E+02	1.47E+01	3.67E+02
plastics	1.24E+01	1.00E+03	3.50E+01	8.74E+02
steel	3.26E+02	3.79E+03	3.00E+02	7.50E+03
natural stone	6.05E+01	5.12E+00	2.96E-01	7.40E+00
timber	7.15E+01	6.64E+02	1.00E+02	2.50E+03
total	1.38E+04	2.33E+04	2.87E+03	7.16E+04

UIA URBAN INNOVATIVE ACTIONS ZU YD

. .

Material	Quantity (ton)	Embodied Energy (GJ)	Embodied CO2 (ton)	Shadowcosts (€)
Aluminium	2.60E-02	4.03E+00	2.14E-01	5.36E+00
Bricks	3.93E+00	1.18E+01	9.44E-01	2.36E+01
Ceramique	1.04E-01	1.97E+00	1.09E-01	2.74E+00
Concrete	1.96E+02	1.73E+02	2.59E+01	6.47E+02
Copper	3.25E-02	1.37E+00	8.46E-02	2.12E+00
Glass	3.38E-01	5.07E+00	2.91E-01	7.27E+00
Insulation	3.44E-01	1.36E+01	5.85E-01	1.46E+01
Paint	5.52E-02	3.25E+00	1.40E-01	3.50E+00
Plaster	6.24E-02	1.12E-01	8.11E-03	2.03E-01
Plastic	3.77E-01	3.10E+01	1.23E+00	3.09E+01
Rubber	9.84E-01	5.02E+01	3.74E-01	9.34E+00
Steel	1.24E+00	2.27E+01	1.78E+00	4.44E+01
Stone	5.00E-03	1.00E-02	5.80E-04	1.45E-02
Timber	1.23E+00	1.70E+01	1.45E+01	3.62E+02
Total	2.05E+02	3.35E+02	4.62E+01	1.15E+03

Conclusions and outlook

- 1. The investigated housing unit has a lower embodied energy of 65%, lower embodied CO₂ of 90 %, and prevents €1k in shadow costs (€25/ton).
- Carbon pricing will facilitate the uptake of re-using materials. Taking a price increase into account of €400/ton CO₂, the investigated solution would result in a price saving of €16k for the housing unit, contributing to a feasible business case.
- 3. Harvesting building components and materials turns out to be costly, and technological solutions have to be further improved.
- 4. In new designs it is necessary to define how elements of a building can be re-used in multiple cycles instead of the current linear approach.

Thank you for your attention!

Michiel Ritzen Michiel.ritzen@zuyd.nl

infra · sloop · milieutechniek