Adaptable skin systems

Omar Zalloum
Architect
M.Sc. Architecture and Planning Beyond Sustainability
Chalmers University of Technology, Gothenburg, Sweden.
Adaptable skin systems

Buildings are continuously changing.
Snäckeback school changes
Snäckeback school changes
Snäckeback school changes
Adaptability

“The capacity of a building to accommodate effectively the evolving demands of its context, thus maximizing value through life”

Source: Schmidt III R, Eguchi T, Austin S and Gibb A, What is the meaning of adaptability in the building industry?
Buildings as systems

1. Structural system
2. Skin system
3. Space plan system
4. Services system

Stuff
Adaptability and building systems

1. Structural system
2. Skin system
3. Space plan system
4. Services system

Adaptability, Rate of change
Cost to change, effort to change, Value
Design for Disassembly

Separation vs. integration of functions.

Flexible connection by Durmisevic, 2006.
Waste hierarchy

Cradle to cradle: The two metabolisms

Biosphere metabolisms

Technosphere metabolisms
Design strategies

Systems Separation
Separate the structure system from the skin system. Avoid load-bearing walls.

Oversize structural elements
Allow for expansion, and to earn future value of the materials when reclaimed.

Standardisation & Modularity
Design to standard dimensions to reduce materials waste and increase reuse possibilities.

Select reusable, recyclable materials
Materials that can be integrated into the technosphere or biosphere metabolisms.

Hierarchy of lifespans
Take in consideration the rate of change and materials excepted lifespans.

Accessible & reversible connections
That does not need customized tools for easy separation of the different layers.

Avoid materials damage
Replacement or modification of shorter life elements does not affect or damage those of greater durability.

Open possibilities
Design in a way to create more possibilities to correspond to the unexpected future needs.
‘The connection’

1. The slab (Primary structure).
2. Built-in hole in the slab.
3. The connection (timber).
4. Stainless steel bolt and nut.
5. Mullions (skin structure).
7. Interior layer of the skin (Add-on).
8. Middle layer of the skin (Fill-in).
The bricks skin

1. The connection (timber).
2. Covering.
3. Reused Bricks.
4. Lime Mortar.
5. Stainless steel support.
7. Rain/Wind stopper.
8. Thermal insulation 300mm.
9. Interior finish 12mm.
10. Mullions.
‘The connection’- benefits and limitations

• Adaptability
 • Preserving the materials value.
 • Limit the design to cubic forms
 • Thermal bridges.
Further explorations: Variable U-Value skins

1. The connection (timber).
2. Uncolored polycarbonate panels 55mm.
3. Air gap can be filled with thermal insulation 300mm.
4. Colored polycarbonate panels 40mm(openable).
5. Window.
Further explorations:
Variable U-Value skins

1. The connection (timber).
2. Covering
3. Vacuum insulation panels 50mm covered with wind and rain stopper 2mm (openable).
4. Colored polycarbonate 55mm.
Conclusions

• Adaptability brings benefits on the short-term for maintenance or adjustments, or at the end of service facilitating the disassembly and materials reclamation.

• Separate the systems and consider the rate of change, the hierarchy of assembly and the components interdependencies to increase adaptability.

• Setting the project’s goals regarding handling the materials at the end of service is important during the design phase as it affects the configurations design.

• The separation of the skin layers highlighted the possibility to achieve variable U-value skins by altering the insulation layer.

• Standardisation and modularity facilitate building components reuse, but they could limit the freedom of the design leading into monotonous buildings.